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Abstract

By default neural networks are not robust to changes in data distribution. This
has been demonstrated with simple image corruptions, such as blurring or adding
noise, degrading image classification performance. Many methods have been pro-
posed to mitigate these issues but for the most part models are evaluated on single
corruptions. In reality, visual space is compositional in nature, that is, that as well
as robustness to elemental corruptions, robustness to compositions of corruptions
is also needed. In this work we develop a compositional image classification
task where, given a few elemental corruptions, models are asked to generalize
to compositions of these corruptions. That is, to achieve compositional robust-
ness. We experimentally compare empirical risk minimization with an invariance
building pairwise contrastive loss and, counter to common intuitions in domain
generalization, achieve only marginal improvements in compositional robustness
by encouraging invariance. To move beyond invariance, following previously
proposed inductive biases that model architectures should reflect data structure,
we introduce a modular architecture whose structure replicates the compositional
nature of the task. We then show that this modular approach consistently achieves
better compositional robustness than non-modular approaches. We additionally
find empirical evidence that the degree of invariance between representations of
‘in-distribution’ elemental corruptions fails to correlate with robustness to ‘out-of-
distribution’ compositions of corruptions.

1 Introduction
Biologically intelligent systems show a remarkable ability to generalize beyond their training stimuli,
that is to learn new concepts from no, or few, examples by combining previously learned concepts [1–
4]. In contrast, artificial neural networks are surprisingly brittle, failing to recognize known categories
when presented with images with fairly minor corruptions [5–9]. To improve robustness many
methods have been proposed for learning more robust representations, including data augmented
training techniques [9–13], and encouraging invariant representations or predictions [14–17].

However, when the robustness of these methods is evaluated it tends to be on single corruptions of
the type seen in ImageNet-C [8]. In reality, the space of possible corruptions is compositional. If
we draw a loose correspondence between corruptions and real world weather conditions, with noise
akin to rain on a windshield, blur as fog and a contrast change as a change in brightness, we see
it is in fact possible to have rain, fog and bright sun simultaneously. In this work we extend the
notion of robustness over corruptions to robustness over compositions of corruptions. We construct
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Figure 1: The compositional robustness task. A model is trained jointly on images corrupted with
elemental corruptions (left) and evaluated on images corrupted with compositions of these corruptions
(right). Shown is all 7 elemental corruptions and a subset of the 160 compositions of corruptions.

a compositional image classification task where a neural network is trained on single elemental
corruptions and evaluated on compositions of these corruptions (Figure 1). Importantly, this is
not an adversarial or no-free-lunch task, as we want the AI systems we develop to be capable of
compositional generalization [18–24].

If natural visual data can be decomposed into a set of elemental functions (or mechanisms [25, 26]),
we do not yet know how to find them. The compositional robustness task we create allows us to
experiment with a compositional structure where the underlying elemental functions are known. By
studying the behaviors of neural networks under this structure, we aim to gain insights into how we
might develop methods for better compositional robustness. Such insights could be applied to create
systems that generalize more robustly or allow for lower data collection costs, needing only to collect
or synthesize the elemental corruptions instead of the exponentially large number of compositions.
Finally, this task creates a new domain generalization task on which we can evaluate the generality of
proposed methods for domain generalization. In domain generalization parlance, a system is trained
on data from multiple training domains (the elemental corruptions), and then evaluated on data from
a related set of test domains (the compositions), from which no data samples are seen during training.

To better understand how neural networks behave on out-of-distribution compositional data we
evaluate different methods for domain generalization on this task. Firstly, we explore empirical
risk minimization (ERM), which has been shown to be a strong baseline when correctly tuned
[27]. Secondly, we evaluate a setup where invariance between the same image under different
corruptions is explicitly encouraged using the contrastive loss [28–30], since a central theme in
domain generalization has been to encourage the learning of invariant representations [31–41].
Finally, we introduce a modular architecture to better reflect the compositional structure of the
task [42]. Here, rather than all parameters jointly modelling all corruptions, each elemental image
corruption is ‘undone’ by a separate module in latent space.

Counter to our initial expectations we find that training to encourage invariant representations
with the contrastive loss offers only minor improvements in terms of out-of-distribution accuracy,
whilst the modular architecture consistently outperforms other methods. Additionally, we find that
the degree of invariance between representations of elemental corruptions fails to correlate with
performance on out-of-distribution compositions of corruptions. At their narrowest interpretation,
these results empirically show that for compositional robustness, when training domains consist only
of the elemental components, modular approaches tend to outperform monolithic (non-modular)
approaches. At their broadest interpretation our results question whether encouraging non-trivially1

invariant representations is sufficient to achieve compositional domain generalization. This indicates
that there is still work to be done on understanding the additional properties required for compositional
robustness and suggests more modular architectures as a promising candidate for one such property.

2 Related Work
We now briefly recap related works from the areas of domain generalization, invariant representations,
modularity, compositional generalization and robustness.

1The trivial case with constant representations has maximal invariance but cannot achieve good generalization.
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Domain Generalization and Invariant Representations. The creation of models that are robust
to unseen changes in data distribution is the work of domain generalization. Given certain training
domains, the aim of domain generalization is to build models that can generalize to related unseen
test domains. One common approach is to encourage the learning of invariant representations
between training domains whilst achieving high performance [31–41], with the idea that this will
lead to invariant representations between training and test domains and hence good generalization
performance. However, this relies on an implicit assumption that we have sufficient training domains
that are reasonably representative samples from some meta-distribution of domains (this has been
made explicit in some works [43, 44]). It is not clear that this will be true in general, and arguably
replaces the problematic assumption of i.i.d data with an equally problematic assumption of i.i.d
domains. What’s more, such generalist approaches may be unable to take structure amongst training
domains into account. It should be noted that there has also been substantial work on encouraging
invariance for the related task of domain adaptation where (unlabelled) data from test domains is
available [45–50]. Despite being motivated by theoretical work [51, 52], the central role of invariance
in domain adaptation and generalization has been questioned [53–57]. In Section 4.3 we discuss the
limitations of encouraging invariance for compositional robustness.

Relational Inductive Biases and Modularity. A closely related approach to learning robust represen-
tations aims to take advantage of explicit structure in data. These relational inductive biases [58] aim
to include knowledge about entities and the relations between them into neural network architectures.
For example, we can encode that entities should not change under certain transformations by building
invariance to these transformations into our architectures. Work on equivariance beyond translation
explicitly creates such robustness [59–61] but is usually formulated in terms of group actions [62]
so is limited to invertible transformations. More general approaches aim to uncover structure by
decomposing data into independent (causal) mechanisms [21, 25, 26, 63, 64] or disentangled factors
of variation [65–73]. Ways to explicitly model decomposable structures in data include pre-training
on primitive components [1] and using modular architectures to encode structure [18, 42, 64, 74–81].
In contrast, in this work we know how the data structure decomposes and explore the performance of
modular and non-modular architectures on the recomposition of known elemental components.

Compositional Generalization. The visual world is compositional [23, 82–85]. Whilst much has
been made of compositionality in language (linguistic compositionality) and reasoning (conceptual
compositionality) [22–24, 58, 75, 86–92], compositional robustness has received relatively little
attention. Recent AI systems still fail on compositional tasks [22, 71, 93, 94] where the space of
generalization grows exponentially with the number of elemental components. Whilst practically
it is not possible to sample all combinations of elemental components, one interpretation of large
models [6, 95, 96] is that they aim to sample densely enough to generalize to unseen combinations.
However, for real world data, it is unclear how big the compositional space is and how densely we
need to sample, with this being particularly pertinent if the data distribution is high-dimensional
[97, 98] or fat tailed [99]. To that end, several works have analyzed controlled settings, aiming to
understand the best settings for training in order to achieve the best generalization [31, 71, 100].

Robustness Over Image Corruptions. Whilst the aforementioned work aims to improve the
robustness of neural networks, many have worked specifically on improving robustness for common
image corruptions and adversarial examples [8–17, 101]. However, the majority of previous works are
evaluated only on single corruptions, ignoring the true compositional space formed by the corruptions.

3 Methods
3.1 A Framework for Evaluating Compositional Robustness
We design a framework for evaluating compositional robustness on any dataset for image classification.
We first create elemental components by applying six different corruptions separately to all images.
These corruptions along with the original, Identity (ID), data create 7 training domains. We use
the corruptions Contrast (CO), Gaussian Blur (GB), Impulse Noise (IM), Invert (IN), Rotate 90◦

(R90) and Swirl (SW), seen in Figure 1 (left). We choose these corruptions to include a mixture of
long-range and local effects as well as invertible and non-invertible corruptions. A further exploration
of the choice and parameter settings of corruptions is given in Appendix A.

To test compositional robustness we create images from compositions of the elemental corruptions,
see Figure 1 (right). We consider every possible permutation of compositions of two corruptions
(excluding Identity) giving 6P2 = 30 possible compositions. For compositions of more than two
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corruptions we sample the possible permutations to approximately balance the contributions of
compositions containing different numbers of elemental corruptions (the sampling process is described
in Appendix A). This creates 40 possible compositions of 3 corruptions and 30 possible compositions
for each of 4, 5 and 6 corruptions. Altogether the compositions form 160 test domains. The task we
then try to solve is to achieve the highest classification accuracy on images from the 160 compositional
test domains whilst training only on the 7 elemental training domains.

3.2 Monolithic Approaches
A domain generalization task consists of data from related domains or environments De =

{(x(i)
e , y

(i)
e )}Ne

i=1, with e ∈ Eall, where Eall is the set of all domains we wish to generalize to
and Ne the number of datapoints in domain e. However, during training we only have access to a
subset of domains Etr ⊂ Eall. For our task, Etr is the set of elemental training domains, |Etr| = 7,
and Eall additionally includes the compositional test domains, |Eall| = 167. As we use the same
set of base images to create corrupted images, the number of datapoints, Ne, is the same across all
domains.

For a neural network fθ parameterized by θ, we aim to find parameters, θ∗, from parameter space Θ,
that optimize loss function L, on training domains Etr. The accuracy of fθ∗ is then evaluated on the
test domains. Monolithic approaches share all parameters, θ∗, over all domains where,

θ∗ = argmin
θ∈Θ

∑
e∈Etr

Ne∑
i=1

L(fθ(x(i)
e , y(i)e )). (1)

The first approach we evaluate is Empirical Risk Minimization (ERM), training all parameters jointly
to minimize some risk function over training domains. We set L to be the mean cross entropy loss.

The second approach we evaluate is contrastive training. A standard domain generalization approach
is to encourage invariance between representations on the training domains [102] and since we
have paired data between domains we can explicitly encourage invariance using the contrastive loss
[28–30]. Note that the availability of paired data creates a best-case set up for the learning of invariant
representations and that learning a representation that is invariant for paired images from different
domains would satisfy the invariance encouraging criteria of previous works [33–35].

We follow the SimCLR contrastive training formulation [28], taking B datapoints from each elemental
training domain (created from the same base images) to get a minibatch of size B|Etr|. Applying
an additional index to each of the domains in Etr to get Etr = {ed}Dd=1, positive pairs come from
pairs of the same image under different corruptions (x(i)

er ,x
(i)
es ), r ̸= s, and negative pairs from all

other pairs in the minibatch (x
(i)
er ,x

(j)
es ), i ̸= j. We apply the contrastive loss on representations

from the penultimate layer of fθ , notating the representation for x(i)
e as z(i)

e . Using cosine similarity,
sim(u,v) = uTv/∥u∥∥v∥, to measure similarity between representations we define the loss for a
positive pair in the minibatch as

ℓ(x(i)
er ,x

(i)
es ) = − log

exp(sim(z
(i)
er , z

(i)
es )/τ)∑D

d=1

∑B
k=1 1[k ̸= i] exp(sim(z

(i)
er , z

(k)
ed )/τ)

, (2)

where τ is a temperature parameter and 1[k ̸= i] is an indicator function equal to 1 when k ̸= i and
0 otherwise. We compute this loss across all positive pairs in the minibatch to encourage invariant
representations. To learn to classify, we additionally include the cross entropy loss to arrive at,

L(fθ(x(i)
er , y

(i)
er )) = −

C∑
c=1

1[y(i)er = c] log(σ(fθ(x
(i)
er ))c + λ

∑
es∈Etr
s̸=r

ℓ(x(i)
er ,x

(i)
es ). (3)

Here the first term is the cross entropy loss, with C the total number of categories, 1[y = c] an
indicator function that is 1 when y = c and 0 otherwise, σ the softmax operation, and, in a slight
overloading of notation, subscript c represents the cth entry of the log-softmax vector. λ is a hyper-
parameter weighting the influence of the cross entropy and contrastive terms. Note also, as described
above, Equation 3 is calculated on a minibatch rather than over all datapoints simultaneously.

To evaluate the monolithic approaches on compositions of corruptions we simply calculate classifica-
tion accuracy on the domains in Eall.
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3.3 A Modular Approach
The final approach we evaluate is a modular architecture, as it has been argued that modularity is a
key feature of robust, intelligent systems [21, 103]. For each elemental corruption we add one module
to our network which aims to ‘undo’ the corruption in latent space. In practice these modules are
intermediate layers that operate on hidden representations to map the representation of a corrupted
image to the representation of the same image when uncorrupted. To make this possible modules
are designed to have input and output features with the same shape. When classifying a test image
corrupted with a composition of elemental corruptions we sequentially apply the modules for each
corruption present in the composition. For example, if we are testing on the composition IN◦GB
we apply both the module trained on the Invert corruption and the module trained on the Gaussian
Blur corruption. Modules that are located in-between earlier layers of the network are applied first, if
modules are in the same layer we apply the module which appears first in the permutation ordering
(Section 3.1).

To formalize this idea, we split network parameters θ into one set of parameters shared over all
domains, θshared, and an additional set of domain specific module parameters for each training
domain {θe}e∈Etr

, similar to residual adaptation [104, 105]. In practice θshared parameterizes a
neural network and θe the intermediate layers that can be inserted when working with domain e.

To train this system we first train parameters θshared on Identity data using the cross entropy loss.
We then freeze θshared and train separate modules parameterized by θe on data from each elemental
training domain e ∈ Etr along with paired Identity data. Since we encourage the modules to ‘undo’
corruptions, we use the loss function from Equation 3 with minor modifications. Firstly, the set of
domains for the contrastive loss is limited to only the relevant elemental training domain and the
Identity domain. Secondly, for the Identity data, latent representation z is from the layer at which
the module is inserted and for the corrupted data from the output of the module, spatially flattening
the feature map if required (as opposed to from the penultimate network layer as described when
introducing Equation 2 in Section 3.2). Appendix B contains a graphical depiction of this process.

An important design choice for any modular approach is how to choose where to locate the modules,
with recent works observing that different domain changes should be dealt with in different neural
network layers [106–108]. We take a very simple approach, training separate modules between each
layer of the network parameterized by θshared for 5 epochs. We then select the module with the best
in-distribution accuracy on a held-out validation set as the module to train to completion. This is
similar to using adaptation speed [109, 110] as a proxy to discover modular decompositions, although
in practice we find if we use adaptation times substantially smaller than 5 epochs we can erroneously
select module locations that do not achieve optimal in-distribution performance.

3.4 Measuring the Invariance of Learned Representations
Since encouraging invariance is so prominent in the domain generalization literature [102] we also
empirically investigate the role of invariant representations in generalizing to unseen compositions of
corruptions. We create two invariance scores following the methods of Madan et al. [80], with full
details along with an illustrative example in Appendix C. These per-neuron scores are calculated for
every neuron in the penultimate layer of the network (after applying modules if applicable), and the
median score over all neurons is reported. Loosely the elemental invariance score, is the maximum
difference in neuron activation amongst the elemental corruptions normalized to lie between 0 and
1, with the idea that this score should be high when all elemental corruptions activate a neuron in a
similar way (i.e. the neuron is invariant to the elemental corruptions). We additionally calculate the
composition invariance score, which also lies between 0 and 1 and measures how similarly a neuron
activates on a composition when compared to the closest elemental corruption in the composition. We
choose the closest elemental corruption because, to achieve high accuracy, it should be sufficient for
a neuron to activate similarly on the composition and one elemental corruption, even if the elemental
corruptions as a whole do not activate invariantly.

3.5 Datasets, Architectures and Training Procedure
We evaluate each training approach on three different datasets for image classification: EMNIST [111],
an extended MNIST with 47 handwritten character classes; CIFAR-10 [112], a simple object recogni-
tion dataset with 10 classes, and FACESCRUB [113], a face-recognition dataset. For FACESCRUB we
follow [114] removing classes with fewer than 100 images, resulting in 388 classes, with each class
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Figure 2: Evaluating compositional robustness on different datasets. Evaluation domains are divided
into groups depending on the number of elemental corruptions making up a composition. Different
colored boxes (left to right in each triple) show the performance of ERM, contrastive training, and
the modular approach. Ceiling accuracy is determined by a model trained and tested on Identity data.

representing an individual identity. We train using stochastic gradient descent with momentum 0.9
and weight decay 5× 10−4, learning rate is set using a grid search over {1, 10−1, 10−2, 10−3} and
contrastive loss weighting, λ, over {10, 1, 10−1, 10−2}, with the best setting selected based on the
performance on a validation set of the training domains [27]. τ from Equation 2 is set to 0.15 in
all experiments. We use a batch size of 256 (or the nearest multiple of |Etr| for the contrastive loss)
and train for a maximum of 200 epochs, using early stopping on the held out validation set. Each
dataset is run over three seeds from which we select one seed to report the most pedagogical results.
CIFAR-10 and FACESCRUB images are augmented with random cropping and flipping, ensuring
positively paired examples receive exactly the same augmentation. For EMNIST we use a simple
convolutional network with a LeNet-like [115] architecture with modules made up from convolutional
layers. For CIFAR-10 we use ResNet18 [116] without the first max pooling layer, wherever possible
using ResNet blocks as modules. For FACESCRUB we use Inception-v3 [117] without the auxiliary
classifier. As with ResNet we use additional Inception-v3 layers as modules wherever possible. For
full architectural details see Appendix D.

4 Results
In this section we evaluate the compositional robustness of the different training approaches, first by
examining the accuracy of different methods on unseen compositions of corruptions. We additionally
explore the relationship between compositional robustness and invariance amongst representations of
elemental corruptions. We end on the practical limitations of the approaches we consider in this study.

4.1 Monolithic Approaches Show Limited Compositional Robustness
Figure 2 shows the classification accuracies of each of the three approaches for each of the three
datasets. The evaluation domains, Eall, are divided into groups depending on how many elemental
corruptions are in the composition applied to images in a domain. Across all methods and datasets we
see domains with 1 corruption achieve very good, near ceiling, performance. This is not surprising as
this represents the accuracy on the elemental training domains. A granular view for each of the 167
domains for every method can be seen in heat maps in Appendix G.

In Figure 2 the blue and orange box plots show the performance of ERM and contrastive training
respectively, for which we can observe some general trends. Firstly, accuracy on compositions drops
as the number of elemental corruptions in a composition increases, with compositions of 5 or 6
corruptions rarely performing above chance level. Intuitively, as each additional corruption makes
the image harder to recognize (see Figure 1), it makes sense that this pattern emerges. Perhaps more
surprisingly, both methods achieve accuracy far above chance for compositions of 2 corruptions
and perform relatively well for compositions of 3 corruptions despite these domains being outside
of the training distribution. We also see that the contrastive training approach makes only minor
improvements over ERM, with the most improvement for CIFAR-10. This runs counter to our
assumption that encouraging invariance amongst training domains would increase compositional
robustness. Finally, we note that neither method optimally solves the task, some compositions of 2
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corruptions contain only invertible corruptions, yet neither method reaches ceiling performance for
any composition of 2 corruptions.

4.2 The Modular Approach Achieves the Best Compositional Robustness
Comparing all three training approaches, we observe that the modular approach outperforms both
ERM and contrastive training, with higher mean performance in almost all cases in Figure 2. The
only exception is on compositions of 2 corruptions for FACESCRUB, where the modular approach
is marginally outperformed by contrastive training. These results demonstrate that the monolithic
approaches are unable to learn to modularize the structure of the task in the same way as the modular
approach, since they do not achieve the same performance levels. Additionally we can observe that
explicitly modularizing the modelling of elemental corruptions outperforms the direct encouragement
of invariance in terms of compositional robustness.

4.3 In-Distribution Invariance Does Not Correlate With Compositional Robustness
To investigate our findings further we examine the invariance scores for the different approaches. We
again split test domains by the number of elemental corruptions they include and plot correlations
for EMNIST in Figure 3. Figure 3, top row, plots the elemental invariance score against accuracy
on compositions. Interestingly we observe no meaningful correlation between elemental invariance
scores and accuracies on compositional test domains, with high p-values and low r-values. This runs
counter to our initial expectations based on the ubiquity of invariant representation learning in the
domain generalization literature. For our compositional task, these results indicate that encouraging
invariance between representations on the training domains may be insufficient to achieve robustness.
We even see some points for the modular approach (in the upper left of the plots) that achieve higher
accuracy than ERM or contrastive training achieve on any domain yet have lower invariance scores.

We also note that contrastive training only slightly increases the observed invariance between ele-
mental corruptions, with a small rightward shift of points when compared to ERM. One possible
reason for this smaller than expected increase may be because we set hyper-parameters on the training
domains [27] and high contrastive weights take away from in-distribution performance. Alternatively,
there has been some discussion on whether the contrastive loss improves performance because of
increased invariance or by other mechanisms [40, 56].

Row three of Figure 3 shows strong positive correlations between the composition invariance score
and accuracy on compositions. This is as expected, since a high composition invariance score
indicates a similar representation between compositions and elemental corruptions (which all achieve
good accuracy). However, in row two of Figure 3 we again see limited, or even negative, correlations
between elemental and composition invariance scores. This demonstrates that invariance built on
elemental training domains may fail to transfer to invariance on compositional test domains, so we
cannot consistently improve the composition invariance score by encouraging elemental invariance.

By and large these trends are consistent over datasets (Appendix E) and seeds (Appendix F). A notable
exception is the negative correlation for the modular approach in row two of Figure 3 is not seen in
other datasets. We also observe a positive correlation between elemental invariance score and accuracy
for ERM on CIFAR-10. On CIFAR-10, the encouraging of invariance with contrastive training builds
slightly more invariant representations but then correlation between elemental invariance and accuracy
disappears.

4.4 Practical Limitations
The aim of this work is to provide greater understanding of the factors that influence compositional
robustness in neural networks. In particular, it is not our aim to provide an oven-ready method for
improving compositional robustness. Nevertheless we now show some additional experiments to
briefly highlight some of the practical limitations of the modular approach taken in this study.

Firstly, compared to the monolithic approaches, the modular approach has substantially higher
variance over seeds. This is primarily due to variance in the selection of the module locations.
Figure 4 shows results for the same methods as in Figure 2 trained with a different random seed.
Although better in some cases (CIFAR-10, compositions of 5), we see things can also be substantially
worse (FACESCRUB). Whilst module location may have little effect on the in-distribution accuracy,
putting modules in the optimum location had a large impact on compositional robustness and should
be a focus of future work on modularity.
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Figure 3: Correlating invariance scores with compositional robustness for EMNIST. Row one
shows the level of representational invariance amongst elemental corruptions fails to correlate with
compositional robustness (accuracy). Row two shows the lack of dissemination of invariance between
elemental corruptions and compositions. Row three plots composition invariance scores against
compositional robustness. Columns show subsets of evaluation domains depending on the number of
elemental corruptions making up a composition (as in Figure 2).

We also evaluate an alternative modular method where every corruption is handled in image space,
that is, we train auto-encoders using mean squared error to transform a corrupted image into the
corresponding Identity image. To handle compositions we chain together auto-encoders for the
relevant elemental corruptions, aiming to sequentially undo the corruptions to arrive at a clean image.
We train two possible classifiers to use on the images outputted by this approach; the first minimizes
cross entropy loss on clean data (AE-ID) and the second jointly on the outputs of the auto-encoders
for all training corruptions (AE-Joint). The compositional robustness of these methods is shown
in Figure 4. In general these methods perform relatively poorly on smaller numbers of corruptions
(compositions of 2 or 3), this is largely because, as with the modular approach, the auto-encoders
are sensitive to the ordering in which they are applied on a composition. On the other hand, the
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Figure 4: Evaluating the compositional robustness of alternate training approaches and variance over
seeds. The first three boxes in each quintuple are the same as in Figure 2 but trained with a different
random seed. The remaining boxes (red and purple) show the performance of a modular approach
using auto-encoders to undo each elemental corruption.

auto-encoders can often outperform all methods for larger numbers of corruptions, indicating that
there likely exist methods that can achieve better compositional robustness than the methods we
evaluate in this work.

Finally, apart from ERM all of the evaluated methods require paired data between domains which is an
unrealistic expectation in practical applications. Additionally, for modular approaches we must know
which corruptions are applied in a given test domain in order to apply the correct modules. Another
interesting angle for future, more practically minded, solutions is to remove these assumptions.

5 Discussions

We end with several discussions on different interpretations of this work and links to larger questions
that may motivate future work.

What is the structure of natural data? In our compositional robustness framework we see only the
elemental factors of variation (elemental corruptions) during training. In reality, whilst it is likely
not possible to see every composition, most real-world data will contain an unstructured sampling
of the compositional space. This assumes however, that it is possible to decompose data from
the environment into elemental factors of variation [65–68] or independent (causal) mechanisms
[25, 26, 63]. At present it remains unknown if there exists a practically sized set of elemental
transformations from which all visual stimuli can be composed, but if such a set exists, the ideas
presented in this work suggest that modular architectures may be able to model this space more
efficiently than large monolithic models.

Learning to decompose from data. If there exists a set of elemental transformations from which
all visual stimuli can be composed, and we are to make use of modularity as an inductive bias
to model them, we must learn how to decompose datasets into their constituent factors and how
to modularize knowledge in the appropriate semantic spaces [21]. In this work we have shown
that modular approaches have the potential to surpass previous approaches if the decomposition
is available and progress has been made on finding appropriate semantic spaces [106, 107]. The
learning of decompositions remains an open problem [26, 64, 70, 109].

How modular should neural networks be? The modular approach taken in this study uses neural
network layers as modules which are manually assigned to handle specific corruptions, yet we have
also experimented with monolithic networks and with using entirely separate networks for each
corruption (Section 4.4). Even if we are able to decompose data into constituent factors, there remains
a question of what degree of modularity should be used to model these factors. There have been
recent exciting empirical studies in this direction [77, 80, 118] but no consensus has yet been reached.

How far will invariance take us? Our results, and the results of others [53–56], raise questions
about whether encouraging invariance alone is sufficient to achieve domain generalization in general.
We know that invariance is a key factor for robust generalization but we do not yet know how far
invariance will be able to take us. Perhaps we simply need to better understand and implement the
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neural mechanisms that allow invariances to build [21, 63, 119, 120], or we may need to further
explore learning representations that are only invariant over certain dimensions [56, 121, 122].

6 Conclusion
Since the visual space containing all corruptions is compositional in nature, we have introduced a
new framework to evaluate the compositional robustness of different models. We have observed that
modular approaches outperform monolithic approaches on this task, even when invariant represen-
tations are encouraged. For domain generalization tasks with compositional structure our results
raise questions about the efficacy of encouraging invariance without further inductive biases. This
work represents only a first step in understanding how neural networks behave under compositional
structures, further research is needed into developing methods that make fewer assumptions about the
information available at test time and that can work with large unstructured datasets where factors of
variation are unknown.

Reproducibility statement

The code to reproduce the results herein is publicly available at the following GitHub repository:
https://github.com/ianxmason/compositional-robustness. The experimental setup is
described in Section 3.
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A Choice of Corruptions

The choice of corruptions used in our compositional robustness task is quite subtle. We want to ensure
a good mixture of different types of corruptions and the compositions they form, but without creating
a compositional space that is so big that it becomes prohibitively expensive to evaluate. Due to the
exponential increase in the number of possible compositions as the number of elemental corruptions
increases, and in order to reduce computational costs, we make the following concessions: (i) we keep
the total number of elemental corruptions low whilst ensuring a good mixture of elemental corruptions;
(ii) we include compositions constructed from every combination of elemental corruptions but sample
the possible permutations (orderings) of elemental corruptions that make up a composition (see
Appendix A.1); (iii) we do not consider the 3D projection problem (see Appendix A.2).

As discussed in Section 3.1, along with the Identity (ID) data we consider the corruptions, Contrast
(CO), Gaussian Blur (GB), Impulse Noise (IM), Invert (IN), Rotate 90◦ (R90) and Swirl (SW), which
can be seen for EMNIST and CIFAR-10 in Figures 5 and 6 respectively. We consider two different
behaviors that corrupting functions may exhibit and select this set of corruptions to get a mixture of
behaviors. Firstly, corruptions can be local or long-ranged, where images under local corruptions
(such as Invert) can be transformed to the Identity image by applying a patch-wise operation. On
the other hand, long-ranged corruptions (such as Rotate 90◦) require a holistic understanding of the
image. Secondly, corruptions can be lossless or lossy, where lossless corruptions lose no information
so can be perfectly inverted and lossy corruptions may lose information due to randomness or the
application of non-invertible corrupting functions. Finally, our implementation allows for corruptions
to be applied with differing severity, for example by adding more or fewer random pixels for Impulse
Noise or by increasing or decreasing the Gaussian filter size when creating Gaussian Blur. In our
experiments we keep the severity fixed as varying the severity would again increase the size of the
compositional space.

A.1 Sampling and Commutativity

Our set of elemental corruptions allows us to consider compositions made up of up to six corruptions
at once (we do not allow for repeated application of elemental corruptions). As not all elemental
corruptions are commutative under composition (e.g. IM◦GB ̸= GB◦IM), we must take into account
the possible orderings of elemental corruptions when constructing compositions. When taking
into account possible orderings there are 6P2 = 30 possible orderings of two corruptions but
6P6 = 720 possible ordering of six corruptions, where nPr = n!/(n − r)!, counts the number of
possible permutations. As we don’t want results to be dominated by compositions of larger numbers
of corruptions and to reduce the number of compositional test domains, we sample the possible
orderings.

For compositions of two corruptions, we consider all possible orderings giving 6P2 = 30 compositions.
For compositions of more than two corruptions we aim to get as close to 6P2 = 30 test domains as
possible whilst maintaining a balance of the possible unique combinations of elemental corruptions.
This means we first calculate the number of unique combinations as nCr = n!/r!(n − r)!, where
n is the total number of elemental corruptions and r is the number of elemental corruptions in the
compositions we are considering. We then sample the same number of possible orderings of each

Gaussian Blur (GB)

Identity (ID)

Contrast (CO) CO◦GB R90◦IM◦CO

IN◦R90◦CO◦SW

IM◦IN R90◦SW

SW◦IN◦GB

Impulse Noise (IM)

Invert (IN) Swirl (SW) Rotate 90 (R90) GB◦R90◦SW◦CO CO◦GB◦IM◦ 
IN◦R90◦SW

Elemental Corruptions Compositions of Corruptions

Figure 5: The compositional robustness task for EMNIST.
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IN◦R90◦CO◦SW

IM◦IN R90◦SW

SW◦IN◦GB

Impulse Noise (IM)

Invert (IN) Swirl (SW) Rotate 90 (R90) GB◦R90◦SW◦CO CO◦GB◦IM◦ 
IN◦R90◦SW

Elemental Corruptions Compositions of Corruptions

Figure 6: The compositional robustness task for CIFAR-10.

unique combination until we get as close as possible to 30 domains. As an example, for compositions
of three corruptions 6C3 = 20, so we have twenty unique combinations of three elemental corruptions.
For each unique combination we sample two possible orderings, giving forty test domains. For
compositions of four corruptions we have fifteen unique combinations so we again sample two
possible orderings, for compositions of five corruptions we have six unique combinations so we
sample five orderings and for compositions of six corruptions there is only one unique combinations
so we sample thirty different orderings.

A.2 The 3D Projection Problem

A final point of interest when choosing which elemental corruptions to consider is the problem of 3D
projection. There are certain corruptions that occur in natural data that are inherently 3-dimensional,
yet we only see the results as a projection onto a 2-dimensional image plane. This fact introduces
complexity in the way corruptions can be applied and composed if we are aiming to create a system
with vision that is as robust as humans.

To see the problem, consider the corruption Scale (SC), where we create a zoomed out version
of a base image (see Figure 7). Imagine that we then also consider the composition of Scale
with Gaussian Blur. SC◦GB creates a very different image to GB◦SC, but more importantly these
represent fundamentally different processes in the 3D world. If scaling is applied before blurring this
corresponds to the case where there is a fixed amount of blur in the scene (e.g. because of an eye
condition) and the object we care about is moved further away from the viewer. On the other hand if
blurring is applied before scaling this corresponds to the case where the object itself is blurry (e.g.
because of damage around the edges). This process is depicted in Figure 7.

The point of this discussion is to demonstrate that applying a corruption at the scene level can be
fundamentally different from applying a corruption at the object level. Whilst this can be taken into
account (e.g. by changing the order of Gaussian Blur and Scale), we aim to avoid this situation by
only considering corruptions where changing the ordering under composition does not change the
composition from a scene level process to an object level process (or vice versa). This makes our
task more practical as we can apply it to any image classification dataset. Since we may not even
consciously perceive the effect of scaling accurately [123, 124], future work may find that different
processes in 3D space should be handled in different ways or at different levels of abstraction.
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PP
Near object 

appears bigger

Scale (SC)
Scene Level Blur

Object Level Blur

Far object 
appears smaller

Figure 7: The 3D projection problem. Corruptions of 2D images can represent 3D processes, for
example scaling an image represents moving the object further away from the viewer (top). When
composing corruptions, this can lead to different orderings of corruptions representing different 3D
processes (bottom).

B Module Implementation and Interpretability

Figure 8 shows the training process for a module trained on the Invert corruption. First a network
is trained on Identity data to learn parameters θshared. These weights are then frozen (gray boxes in
Figure 8) and a module is trained to ‘undo’ the Invert corruption in latent space (blue box in Figure 8).
To train the module, the contrastive loss is used to align representations of Identity data before the
module is applied with representations of Invert data after the module is applied. As described in the
main text, we also use the cross entropy loss to ensure classification accuracy is maintained.

Using interpretability tool Deephys [125], we visualize the effect of modules trained in this way
in Figure 9 . We find neurons which are initially activated by very different class instances when
comparing Identity data with corrupted data, but after applying the module, neurons fire for similar
class instances between the Identity and corrupted data.

1

Convolutions & 
Fully Connected 

(Frozen)

Convolutions 
(Frozen)

Convolutions & 
Fully Connected 

(Frozen)

Convolutions 
(Frozen)

Identity

Invert

Invert Specific 
Convolutions 

(Trainable)

Feature  
Extractor

Hidden 
Representation Classifier PredictionCorruption  

Module
Hidden 

Representation

Contrastive Loss

Figure 8: Module training diagram. After pre-training on Identity data, shared network parameters
are frozen (gray boxes) and a module (blue box) is trained to align the representation of the corrupted
Invert image with the representation of the Identity image using the contrastive loss. In this figure,
apart from those of the module, all parameters are identical between the top and bottom networks.
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Pre-Module Post-Module Identity Data

Figure 9: Training modules to undo elemental corruptions. Images in this grid represent some of
the images that maximally activate a neuron. The first column shows a neuron before the module
is applied, this is equivalent to the images that the neuron is tuned to for a network trained only on
Identity data. The second column shows the same neuron after the module is applied. The third
column shows how the Identity data activates this neuron. By comparing across columns we can see
that modules learns to align the hidden representations so that neurons fire for similar class instances
between Identity and corrupted data. Top to bottom the corruptions in the rows are, Invert, Rotate 90◦
and Swirl.

C Elemental and Composition Invariance Scores

This section first gives the full formalization for our elemental invariance score and composition
invariance score following Madan et al. [80]. We then give a worked example with and exemplar
activation grid to further detail the invariance scores.

For every neuron in the penultimate layer of a network (after applying modules if applicable)
we calculate the mean activation per domain-category pair over all test data. The activations are
normalized by the maximum firing of the neuron over all domains with any dead neurons (with
maximum firing less than 10−6) discarded. For a specific test domain we select only the domain-
category pairs where the domain is either the test domain itself or one of the elemental corruptions
used to create the composition for the test domain. Using CO◦GB as an example for CIFAR-10, this
would leave us with a separate grid of size 4×10 for every neuron, where the rows are the corruptions
ID, CO, GB and CO◦GB and the columns are the 10 categories of CIFAR-10 (an example for one
neuron is shown in Table 1).

This domain specific activation grid for a single neuron is then normalized again so that all values
lie between 0 and 1 by subtracting the minimum value in the grid from every cell and dividing by
the difference between the maximum and minimum values. We notate the activation values by ai,j ,
with i referencing the domain and j the category. Additionally we take the number of elemental
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Table 1: An exemplar activation grid
Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9 Cat. 10

CO 0.002 0.007 0.038 0.089 0.039 0.794 0.998 0.015 0.022 0.005
GB 0.011 0.021 0.070 0.144 0.061 0.733 0.955† 0.043 0.029 0.020
ID 0.020 0.004 0.051 0.090 0.039 0.791 1.000∗ 0.016 0.018 0.000

CO◦GB 0.035 0.102 0.109 0.126 0.087 0.415 0.638‡ 0.078 0.116 0.138

corruption domains in the grid to be indexed 1, . . . , E and the composition to have index E + 1,
that is, i ∈ {1, . . . , E + 1}. Taking the view that neurons can be interpreted as feature detectors
[125, 126], we select the preferred category, j∗, on the training domains as the category for which the
neuron maximally activates, j∗ = argmaxj

∑E
i=1 ai,j . We then calculate the elemental invariance

score, Ie as the maximum difference in activations amongst the elemental corruptions, with the idea
that this score should be high when all elemental corruptions activate the neuron in a similar way. We
additionally calculate the composition invariance score, Ic, which measures how similarly the neuron
activates on the composition compared to the closest elemental corruption.

Ie = 1− (max
i

ai,j∗ −min
i

ai,j∗), Ic = 1−min{|ai,j∗ − aE+1,j∗|}Ei=1. (4)

These scores always lie between 0 and 1, with higher numbers representing more invariant represen-
tations. We calculate these scores for every neuron in the penultimate layer of the network and report
the median scores over all (non-dead) neurons in our results.

C.1 Worked example

Table 1 shows an exemplar activation grid for a single neuron for the test domain containing the
composition CO◦GB on CIFAR-10. We see the 4 rows consist of the composition alongside the
elemental corruptions that are relevant for CO◦GB, and the 10 columns for each of the 10 categories
of CIFAR-10, creating domain-category pairs.

To calculate the invariance scores for this example we first find the preferred category as j∗ =

argmaxj
∑E

i=1 ai,j , which indicates that this neuron activates maximally for category 7. The
elemental invariance score is the worst case difference amongst the elemental corruption activations
for this category (the maximum is marked ∗, and the minimum is marked †).

Ie = 1− (max
i

ai,j∗ −min
i

ai,j∗)

= 1− (1.000− 0.955)

= 0.955

The composition invariance score finds the activation amongst the elemental corruptions that is closest
to the composition’s activation (marked ‡) for the preferred category.

Ic = 1−min{|ai,j∗ − aE+1,j∗|}Ei=1

= 1−min{|0.998− 0.638|, |0.995− 0.638|, |1.000− 0.638|}
= 0.683

For this particular neuron, we would deduce that the elemental corruptions have relatively invariant
activations whereas the activations are less invariant when we include the composition.
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D Network Architecture Details

This appendix gives the specific architecture of the simple convolutional network used for EMNIST
experiments in Table 2. For CIFAR-10 we use ResNet18 and for FACESCRUB Inception-v3. In both
cases we use the official PyTorch [127] implementations of the architectures. Rather than giving a
lengthy description of the possible architectures for modules between every layer of these networks
we refer the reader to the associated code repository (file lib/networks.py). The architectures of the
auto-encoders used in Section 4.4 can also be found in this file.

Table 2: The network architecture used for EMNIST experiments. For convolutions, the weights-shape
is: number of input channels × number of output channels × filter height × filter width.

Block Weights-Shape Stride Padding Activation Dropout Prob.
Convolution 3× 64× 5× 5 2 2 ReLU 0.1

Convolution 64× 128× 5× 5 2 2 ReLU 0.3

Convolution 128× 256× 5× 5 2 2 ReLU 0.5

Convolution 256× 256× 5× 5 2 2 ReLU 0.5

Linear 1024× 512 N/A N/A ReLU 0.5

Linear 512× Number of Classes N/A N/A Softmax 0

E Invariance Scores for All Datasets

Appendices E, F and G show a large number of plots over the following pages. This appendix
contains further plots correlating invariance scores with compositional robustness. To begin we show
the invariance summary plots for CIFAR-10 (Figure 10) and FACESCRUB (Figure 11). These plots are
the equivalent of Figure 3 for EMNIST from the main text.

Following this, in Figures 12-20, we show the invariance summary plots (Figures 3, 10, 11) expanded
over all compositional test domains. That is, these plots include the plots for compositions containing
more than three corruptions. For compositions of more than three corruptions accuracy is often low,
making it challenging to uncover meaningful trends.

F Variance Over Seeds

This appendix shows the results included in the main text for two further random seeds. In particular
we replicate Figures 2, 3, 10 and 11 in each case. The results in the main text come from the first
random seed, Figures 21-24 show the second random seed and Figures 25-28 show the third random
seed.

G Heat Maps - Full Granular Results

Finally we show granular results, showing the individual accuracy for every elemental corruption and
composition. This is the raw data that is summarized by the box plots in Figures 2, 21 and 25. We
show heat maps for every dataset and every seed in Figures 29-37 to give a per-domain view of the
differences in behaviors for the different methods for compositional robustness.
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Figure 10: Correlating invariance scores with compositional robustness for CIFAR-10. These plots
plot the same relationships as in Figure 3.
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Figure 11: Correlating invariance scores with compositional robustness for FACESCRUB. These plots
plot the same relationships as in Figure 3.
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Figure 12: Correlating the elemental invariance score with compositional robustness for EMNIST.
These plots expand the first row of Figure 3 to show all compositional test domains.
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Figure 13: Correlating the elemental invariance score with the composition invariance score for
EMNIST. These plots expand the second row of Figure 3 to show all compositional test domains.
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Figure 14: Correlating the composition invariance score with compositional robustness for EMNIST.
These plots expand the third row of Figure 3 to show all compositional test domains.
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Figure 15: Correlating the elemental invariance score with compositional robustness for CIFAR-10.
These plots expand the first row of Figure 10 to show all compositional test domains.
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Figure 16: Correlating the elemental invariance score with the composition invariance score for
CIFAR-10. These plots expand the second row of Figure 10 to show all compositional test domains.
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Figure 17: Correlating the composition invariance score with compositional robustness for CIFAR-10.
These plots expand the third row of Figure 10 to show all compositional test domains.
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Figure 18: Correlating the elemental invariance score with compositional robustness for FACESCRUB.
These plots expand the first row of Figure 11 to show all compositional test domains.
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Figure 19: Correlating the elemental invariance score with the composition invariance score for
FACESCRUB. These plots expand the second row of Figure 11 to show all compositional test domains.
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Figure 20: Correlating the composition invariance score with compositional robustness for FACE-
SCRUB. These plots expand the third row of Figure 11 to show all compositional test domains.
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Figure 21: Evaluating compositional robustness on different datasets (second random seed). This
figure is the same as Figure 2 with a different random seeding.
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Figure 22: Correlating invariance scores with compositional robustness for EMNIST (second random
seed). This is the same as Figure 3 with a different random seeding.
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Figure 23: Correlating invariance scores with compositional robustness for CIFAR-10 (second random
seed). This is the same as Figure 10 with a different random seeding.
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Figure 24: Correlating invariance scores with compositional robustness for FACESCRUB (second
random seed). This is the same as Figure 11 with a different random seeding.
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Figure 25: Evaluating compositional robustness on different datasets (third random seed). This figure
is the same as Figure 2 with a different random seeding.
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Figure 26: Correlating invariance scores with compositional robustness for EMNIST (third random
seed). This is the same as Figure 3 with a different random seeding.
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Figure 27: Correlating invariance scores with compositional robustness for CIFAR-10 (second random
seed). This is the same as Figure 10 with a different random seeding.
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Figure 28: Correlating invariance scores with compositional robustness for FACESCRUB (second
random seed). This is the same as Figure 11 with a different random seeding.
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Figure 29: Per-domain heat map for EMNIST (first random seed). This shows the raw EMNIST data
from Figure 2. Best viewed with zoom.
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Figure 30: Per-domain heat map for CIFAR-10 (first random seed). This shows the raw CIFAR-10
data from Figure 2. Best viewed with zoom.
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Figure 31: Per-domain heat map for FACESCRUB (first random seed). This shows the raw FACESCRUB
data from Figure 2. Best viewed with zoom.
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Figure 32: Per-domain heat map for EMNIST (second random seed). This shows the raw EMNIST
data from Figure 21. Best viewed with zoom.
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Figure 33: Per-domain heat map for CIFAR-10 (second random seed). This shows the raw CIFAR-10
data from Figure 21. Best viewed with zoom.
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Figure 34: Per-domain heat map for FACESCRUB (second random seed). This shows the raw
FACESCRUB data from Figure 21. Best viewed with zoom.
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Figure 35: Per-domain heat map for EMNIST (third random seed). This shows the raw EMNIST data
from Figure 25. Best viewed with zoom.
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Figure 36: Per-domain heat map for CIFAR-10 (third random seed). This shows the raw CIFAR-10
data from Figure 25. Best viewed with zoom.
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Figure 37: Per-domain heat map for FACESCRUB (third random seed). This shows the raw FACE-
SCRUB data from Figure 25. Best viewed with zoom.

52


	 
	Introduction
	Related Work
	Methods
	A Framework for Evaluating Compositional Robustness
	Monolithic Approaches
	A Modular Approach
	Measuring the Invariance of Learned Representations
	Datasets, Architectures and Training Procedure

	Results
	Monolithic Approaches Show Limited Compositional Robustness
	The Modular Approach Achieves the Best Compositional Robustness
	In-Distribution Invariance Does Not Correlate With Compositional Robustness
	Practical Limitations

	Discussions
	Conclusion
	Appendix

	 Appendix
	Choice of Corruptions
	Sampling and Commutativity
	The 3D Projection Problem

	Module Implementation and Interpretability
	Elemental and Composition Invariance Scores
	Worked example

	Network Architecture Details
	Invariance Scores for All Datasets
	Variance Over Seeds
	Heat Maps - Full Granular Results


